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Abstract 

We present a framework integrating concepts from con- 
figuration management and process management. A lan- 
guage, interpretable by the environment, is proposed in or- 
der to specify the development process of versions and con- 
figurations. Two structuring mechanisms are provided: a 
class-subclass hierarchy and a task-subtask hierarchy. The 
resulting expressive power is illustrated on some examples. 
We describe then how the environment supports the pro- 
cesses specified in this language as well as how it supports 
the dynamic refinement of process specifications. 

Keywords: development process modeling, configuration 

management, generic environments. 

1 Introduction 

It is now becoming widely accepted that one of 
the major difficulties of maintenance problems stems 

from the fact that some knowledge, available during 

development phases, is not available any more dur- 
ing maintenance phases [l]. Typically this includes 

knowledge about. the development process itself or 
about the different steps, the order in which these 

steps have been applied, the decisions taken at each 
step, etc. 

Process modeling has thus become an active re- 
search area and efforts have been made to explicitly 
represent and make use of knowledge about the pro- 

cess in the environment, ranging from explicit repre- 
sentation of the life cycle ([26], IPSE2.5 [17]) or top 

level steps to rules describing tools (ODIN [3]) and 
elementary activities ([19], [14], MARVEL [8]). 

At the same time configuration management tech- 
niques have been developed to help maintaining large 
software systems. Software configuration manage- 
ment has been defined in [25] as the discipline of con- 
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trolling the evolution of complex software systems. 
Although there is an obvious relationship between 
the evolution of the software and the software de- 
velopment process, configuration management (CM) 
and process management (PM) facilities are usually 
loosely coupled. PM oriented environments provide 
system modeling facilities (MAKE [S]) as low level 

process description [23] but most of the time rely on 

tools such as RCS [24] for version control while CM 
oriented environments such as DSEE [ll] do not re- 

ally support emerging PM concepts such as activities 
or contracts of ISTAR [22]. 

In this paper, we describe a system where CM and 
PM concepts are integrated. In section 2, we de- 
velop our process model approach. In section 3, WF 
present our configuration management model stress- 
ing the similarities between CM and PM problems. 
In section 4, we present our integrating framework. 
The next sections are dedicated to examples. WE 
conclude by a brief section positioning our approach 
with respect to related research. 

2 Process Model 

In the literature two main approaches to process 
modeling can be distinguished. 

On the one hand, in the process programming ap- 
proach [16], the development process is described as 
a program before the development is started. This 
program is then executed by the environment and the 
developer’s role is to provide the information required 
during the process execution. From the environment 
point of view, the process used by the developer to 
obtain this information does not matter and is buried 
in documents. 

On the other hand, an environment such as IS- 
TAR [4] focuses on capturing how this information 
has been acquired. The definition of the process is 
seen as an integral part of the development itsen 
and is one of the developer’s task. To support this 
view, ISTAR keeps track of the contracts dynami- 
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tally issued by the developers in the contract hier- 
archy. However, the acquired knowledge is closer to 
a process trace (or program trace) than to a process 
description (or program). For instance, the terms of 
the contract (characteristics of the objects to be pro- 
duced) and the relationships between subcontracts 
(sequence, parallel, etc.), are not known by the en- 
vironment. Consequently, the functionality provided 
by the environment is reduced to the management of 
the client/contractor protocol. 

In this paper, the process is a priori described in 
terms of classes (similar to process programs). This 
description can then be refined dynamically during 
the development (similar to issuing contracts dynam- 
ically). 

From an architectural point of view, supporting 
this process model means that we have to go from 
generic environments instantiated with a process de- 
scription to environments able to deal with dynam- 
ically acquired process descriptions. This raises, 
among others, the problem of maintaining the con- 
sistency of the knowledge about the process. 

From the user’s (developer’s) point of view, this 
model requires that he formalizes his development 
process. This should be contrasted with the user’s 
role in environments tracing the user’s actions. This 
extra burden is put on the developers in order to have 
higher level descriptions that can be re-used later on 
during maintenance phases. 

3 Conflguration Management Model 

In this section we review the different elements of our 
CM system emphasizing the similarities between CM 
and PM problems. 

To control the evolution of the different compo- 
nents or modules, CM systems rely on version control 
systems (RCS [24], SCCS [21]). A version control 
system keeps track of the modifications by keeping 
different versions of a component. Versions are im- 
mutable and changes are made by introducing new 
versions (obtained by modification of a previous ver- 
sion copy). The set of versions associated with a 
component or the version family is usually structured 
into a history tree, the sons of a version A being the 
versions derived from A. 

The functionality of version control systems de- 
scribed above is quite similar to the functionality 
of PM systems tracing user’s actions. The system 
knows what modifications have been done but does 
not know their semantics or what assumptions have 

been made, what design decisions have been taken, 
why they have been taken, etc. Furthermore, there is 
usually no way to a priori specify sequences of steps 
that must be applied in order to develop a compo- 
nent although these development procedures (“life 
cycles”) exist in all organizations. 

As pointed out in [25], very little attention has 
been paid to facilities allowing a top down approach 
or change request driven CM. MRCS [lo] is an early 
attempt to support the notion of change request. The 
difficulty to impose such a system to the developers 
reported in [lo] must be related to the discussion, 
in the previous section, about the user’s role. The 
DSEE task concept (“high level” tasks split into sub- 
tasks) can be seen as another attempt. 

Large software products are not monolithic but 
rather they are composed of often many other com- 
ponents. Since these components exist now in differ- 
ent versions, we have to deal with a new kind of ob- 
jects called generic configurations (system model in 
(111). A generic configuration is a structured object 
containing references to version families. The config- 
uration structure represents the relationships exist- 
ing between the different components (is-used-by, is- 
included-in, etc.). A product is then an instantiated 
configuration (bound configuration thread in Ill]) or 
a structured object obtained by substituting, in the 
generic configuration, each component name w&h the 
name of a specific component version. In our frame- 
work, an instantiated configuration is specified by a 
query denoting intensionaly its components versions. 
For this purpose, we use a relational query language 
extended with preferences described in [12,15]. 

From a PM point of view the notion of generic con- 
figuration is important to support top down software 
developments. As a matter of fact, a generic con- 
figuration is an abstract description of a software, 
independent of the low level design decisions that 
can be taken while developing its components. Fur- 
thermore, product building rules (or elementary pro- 
cess programs [23]) describing how to construct de- 
rived objects (i.e. object modules, executables, etc.) 
a la Make, can now be factored out of the specific 
instantiated configuration and associated with the 
generic configuration [ll]. A previous paper [2] de- 
scribes how it is possible to further factor out the 
product building rules by typing the confIguration 
structures and associating the rules with the co&g- 
uration types. 

In the next section, we present a framework where 
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CM and PM facilities are tightly coupled. The sys- 
tem described here (called the task manager or TM) 
is only a component of our experimental environ- 
ment. As far as this component is concerned, there 
are basically three types of versions: the generic con- 
figurations (viewed as a list of version families), the 
instantiated configurations (viewed as a list of ver- 
sions) and the atomic versions. One should however 
keep in mind that this is only the predef!ned Task 
Manager view, In the environment we are elaborat- 
ing, complex objects are typed [13]. On top of such 
a platform, the TM can be customized to take into 
account the knowledge about the different types of 
atomic and other predefined kinds of versions. 

4 Overview 

This section surveys and motivates the main features 
of our system. Our goal is here to be able to specify 
the development process of version trees ( i.e. version 
family objects). 

First, version attributes can be declared with their 
range of values. The attribute declarations specify 
the general version characteristics such as date, au- 
thor, etc. as well as the relevant design decisions. An 
attribute models then a decision, its possible values 
represent the different alternatives and its value on a 
given version indicates what decision has been taken 
during the development of this version. Note that 
although the content of a version is immutable, its 
attribute values can be changed. 

The development process or how the different ver- 
sions must be developed is specified as a set of tasks. 
A task is described in terms of a precondition and 
a postcondition on the version attribute values. The 
precondition specifies on which kind of versions the 
task can be performed and the postcondition what 
kind of versions the task can produce (i.e. creation 
of a new version or change of the attributes of an 
existing version). They make explicit in the environ- 
ment when a task can be performed and what are its 
effects (possible decisions that can be taken, etc.). 

Constraints allow us to factor out of the task de- 
scriptions some knowledge about the development 
process or to specify knowledge that is independent 
of the decomposition in tasks. Constraints are re- 
lationships between attributes or conditions on at- 
tributes that must be true at any time or when some 
specific events occur (i.e. the creation of a new ver- 
sion and the change of attributes of an existing ver- 
sion) independently of the task triggering the event. 

These c:onstraints are expressed as “directed” closed 
well-formed formulas written in a Prolog style, with 
references to the attributes of a version and of the 
versions derived from this version, before and after 
the events. 

I?reconditions and postconditions can be seen as 
task declarations. The task body further specifies 
how the task must be performed. This is speci- 
fied with the same elements as the overall process 
(i.e. attributes, constraints and subtasks). These el- 
ements specify how intermediate versions and goal 
versions (i.e. satisfying the task postcondition) are 
developed from the initial versions (i.e. satisfying the 
task precondition). Since the attributes and con- 
straints model knowledge independent of task decom- 
positio.n, they are inherited through the task-subtask 
hierarchy. However, in order to allow some local in- 
consistency with respect to this knowledge, the inher- 
itance can be blocked at a given level by redefinitions 
in the corresponding task body. 

The notion of class is introduced in this frame- 
work as an encapsulation mechanism for attributes, 
constraints and task declarations describing a given 
development process. The same process “program” 
(class) is now shared by all the version family objects 
of a same class. Furthermore, a class can be re-used 
in different task bodies. 

Finally, as in object-oriented languages, the classes 
are structured in a class-subclass hierarchy with in- 
heritance of all the definitions from the class to the 
subclass. It allows us to incrementally describe the 
process by successive refinements and specializations. 
This is also a key feature as far as the dynamic knowl- 
edge acquisition is concerned. As a matter of fact, 
this acquisition can now be seen as a combination of 
two steps. In the first step, the knowledge, acquired 
during the development of an object, is modeled in a 
new subclass refming the class of this object. In the 
second step, the object is updated in order to become 
an instance of the new subclass. 

5 A Priori Knowledge Specification 

In this section, we develop a simple example illus- 
trating how the a priori knowledge about the devel- 
opment process of components or version families is 
modeled in terms of class specifications. 

The root class is called basic-class. It has three 
predefined attributes: Id the version identifier, G- 
configuration and I-configuration, indicating whether 
or not a version is a generic (resp. instantiated) con- 
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figuration version. These attributes are automati- 
cally maintained by the system. 

We first model two general version properties, the 
creation date and the author by defining a new class 
dated-class as a sublass of basic-class: 

dated-class SUBCLASS-OF basic-class 
ATTRIBUTES 

(Al) Date: String. 
(A2) Author: Name. 

CONSTRAINTS 
(Cl) get-date(Date:initial-value). 
(C2> get-user(Author:initial-value). 
(C3) Date: old-value = Date:new-value. 
(C4) Author: old-value = Author: new-value. 

The attributes Date (Al) and Author (A2) model the 
corresponding general properties. The argument of 
the predicate get-date (resp. get-user) unifies to the 
current date (resp. user). The constraints (Cl) and 
(C2) must be satisfied when a new version is created. 
They specify that no matter what tasks produce a 
new version, its Date (resp. Author) will be initial- 
ized to the current date (resp. user). The constraints 
(C3) and (C4) must be satisfied when attributes of 
an existing version are changed. They specify that 
those attributes may not be changed, no matter what 
tasks change the version attributes. 

We now want to model the following scenario. 

The “successful” development of a version 
from another is decomposed into two basic 

steps, a version development step and a re- 
view step. A version is “successfully” devel- 

oped when it has been positively reviewed. A 
negative review means that further develop- 
ments cannot be based on the reviewed ver- 

sion or on any versions developed from this 
version’. Furthermore, the development of 
successive intermediate versions which must 
not be reviewed is allowed. 

To support the above scenario, a new class is in- 
troduced: 

step-class SUBCLASS-OF dated-class 
ATTRIBUTES 

(A31 Status:[exp.rejected.to-reviea.releasedJ. 
CONSTRAINTS 

(CS) Statusqejected=$next-version:Status=rejected. 
(C6) Id=scratchJStatus=erp. 

‘The decision of a negative review on a version can be taken 
well after other versions have been derived from it. For sim- 
plicity sake, we have not introduced in the scenario, the notion 
of “soft” negative review allowing further development or en- 
hancement from the reviewed version. 

It is specified as a subclass of dated-class and it thus 
inherits the attributes and constraints defined at this 
level. The attribute Status (A3) is introduced to 
model the decisions involved in the scenario (released: 
a positive review, rejected: a negative review, to- 
review: not yet reviewed but must be reviewed, exp: 
not yet reviewed and must not be reviewed). The 
constraint (C5) specifies that all the versions derived 
from a rejected version are themselves rejected. This 
constraint ensures that the rejection decision on a 
version will be propagated on the versions derived 
from this version, no matter who takes this decision. 
Currently only one propagation “direction” is sup- 
ported: from a version to its derived version. The 
constraint (C6) specifies the status of an empty ver- 
sion created when the module is initialized. These 
constraints must always be satisfied. 

The step-class must now be completed with task 
specifications as follows: 

(Tl) TASK step 
(Pei) ON version. 
(Pal) TO version having Statuslreleaaed. 
(El) BODY { 
n-2) TASK develop 
(Pe2) ON version having Statusfrejectsd 

preferring version having max Date. 
mm TO version having Status#released. 
(T3) TASK review 
(Pe3) ON version having Status-to-review. 
(PO31 TO version having Status=rejected 

or Status-released. 
(W) MODE attribute-update. } 

The global “successful” development is called step 
and its overall specification in terms of precondi- 
tion (Pel) and postcondition (Pol) is straightfor- 
ward. The step task is itself composed of the two 
subtasks develop and review defined similarly by a 
precondition and a postcondition. These subtasks 
are basic (no associated body). Note how the pref- 
erence is used in (Pe2) to model the notion of suc- 
cessive development. The mode (M3) is used to fur- 
ther describe the effect of a task. It specifies if the 
task updates the attributes of an existing version, if 
it builds a new version or if both are allowed (the 
default case). 

The definition of a complex task such as step di- 
vides a version tree of class step-class into differ- 
ent subtrees. The external tree contains the versions 
produced by the task and on which the task is ap- 
plied. An internal tree is associated to each version 
on which the task has been applied. It contains the 
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versions on which the subtasks, specified in the body 
(Bl), are applied and the versions produced by these 
subtasks. With respect to the internal trees, the def- 
initions of a task body play a role similar to a class. 
It is possible to specify here all the elements of a 
class: attributes, constraints as well as tasks. The 
attributes and constraints defined above in the task- 
subtask hierarchy are inherited unless they are rede- 
fined internally. Here all the attributes (Al-3) and 
their constraints (Cl-6) are inherited in (Bl). 

The Task Manager interprets the class definitions 
and shows what tasks can be started, ensures that 
only these tasks are started and detects conflicts be- 
tween tasks. In the current system, there is no at- 
tempt to automatically start the tasks. The users 
must thus explicitly start the tasks as well as com- 
plete them. A started task is interpreted by the TM 
as an indication that the task must be performed to 
solve the problem at hand. 

Starting at the top level external tree, the TM de- 
termines the “state” of each task. To do this, it eval- 
uates the task precondition on the external task tree 
as follows: 

1. If there is a unique version satisfying the pre- 
condition, the task state is executable and can 
be started on this version. 

2. If there is no version satisfying the precondi- 
tion, the task is not-executable and cannot be 
started. 

3. If there are more than one version satisfying the 
precondition, the task is to-refine. The task can 
be started provided that first a unique version 
among the versions satisfying the precondition 
is selected. 

Moreover, the subtasks of a task cannot be started 
as long as the task itself is not started. When a com- 
plex task (i.e. with a body) is started on a version, 
the TM determines the subtask “states” by evaluat- 
ing their preconditions on the corresponding internal 
task tree. Initially, this tree consists of the version on 
which the complex task is applied. It is then enriched 
by the versions produced by the subtasks. It will be 
reestablished whenever the same task (i.e. with the 
same naine) is reexecuted on the same version. When 
a basic task is started, the system merely creates a 
working copy of the version on which the task is ap- 
plied (with only read permission in update-attribute 
mode). The working copy can then be viewed or 
modified by tools. 

Figure 1: An object of step-&us 

For example, Figure 1 represents a snapshot of 
an object of step-class taken at a time where step 
is started from the scratch version and after some 
executions of develop. The two levels correspond to 
the two level task-subtask decomposition. Versions 
on which a task is executable are represented in gray. 
At this point, develop and review are executable: the 
former can be started on 1.4 while the latter can be 
started on 1.3. 

The decision to complete a task is also user initi- 
ated. In the task external tree, this can result either 
in the change of the attributes of an existing version 
or in the production of a new version. The “pro- 
duction” means the creation of a new version when 
the task is basic (i.e. “check in”) while it means the 
“export” of an internal version into the external tree 
when the task is not basic. 

Besides ensuring that the postcondition is satisfied, 
the role of the TM is here to check if there are no 
conflicts between tasks. A conflict is detected if: 

1. the version on which a task is started does not 
satisfy the task precondition any more; 

2. a task is completed when some of its subtasks 
are started. 

These are conflict situations since the decision to 
start a task on a version is interpreted as user in- 
dication to the TM that this task must be executed. 

Let’s now assume that develop is started on 1.4 
from the situation described in Figure 1. This in- 
dicates that further development from this version 
must be done and is illustrated in Figure 2 where 
the following events (to-5) are also depicted. The re- 
view task is started on 1.3 and end up with a negative 
result (to). In order to take (C5) into account, the 
system must set the Status of 1.4 to rejected. It de- 
tects a first type of conflict since 1.4 does not satisfy 
(Pe2) any more. In this case the developer and the 
reviewer involved have to negotiate who should take 
the precedence. The next events in Figure 2 then de- 
scribes a situation resulting from a precedence of the 
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reviewer: 1.4 is set to rejected (tl) and the system 
then backtracks develop on 1.2 (t2). This is followed 
by a developer’s decision to further backtrack by a 
rejection of 1.2 (ts), then the development of a new 
intermediate version (1.1.1.1) followed by the devel- 
opment and positive review of version 1.1.1.2 (t4). 
Then the step task is completed on 1.1.1.2 (t5). If 
at that time develop has been started on 1.1.1.2, a 
second type of conflict would be detected. 

We now refine OUT scenario as follows: 

We distinguish four kinds of versions: the 
specification, the design, the prototype and 
the implementation versions. They can be 
developed in two different ways. The first 
way is to split the development in three suc- 
cessive phases that must (“successfully”) de- 
velop respectively a specification, a prototype 
and an implementation version from the ver- 
sion produced by the previous phase. The 
second way is to split the development in two 
phases. In the first phase, the problem is de- 
composed and a generic configuration version 
or a design version is (“successfully”) pro- 
duced. In the second phase, the specifica- 
tion (resp. prototype and implementation) 

-\ versions of the components identified in the 
generic configuration, are integrated to pro- 
duce the final specification (resp. prototype 
and implementation) versions. 

We first model the three phase development in a 
new class called life-cycle-class. 

life-cycle-class SUBCLASS-OF step-class 
ATTRIBUTES 

014) Language : Cspec,design,impl,protl. 
CONSTRAINTS 

(C7) Language:old-value=Language:new-value. 
(C8) Id=scratch + Language=spec. 
cc91 Language=design e C-configuration=true. 
(T4) TASK spec REFINE step 
(pa41 ON version having Language=spec. 
(Po4) TO version having Language=spec. 

BODY { 
CONSTRAINTS 

(ClO) Language:initIal-value=spec. } 
(T5) TASK prot REFINE step 
(Pe5) ON version having Lauguage=spec. 
(Po5) TO version having Languaga=prot. 

BODY { 
CONSTRAINTS 

(Cl11 Language :initiaI-vaIue=prot . } 
(T6) TASK imp1 REFINE step 
(Pe6) ON version having Language=prot. 
(Po6) TO version having Language=impl. 

BODY { 
CONSTRAINTS 

(Cl21 Language :iuitiaI-vaIue=impl. } 

The attribute Language is introduced to model the 
different kinds of versions. The constraint (C7) 

specifies that it may not be changed and (C8) the 
attribute value on the initial version. The con- 
straint ((39) specifies that design versions are the only 

generic configuration versions. 
The three phases are specified by three different re- 

finements (T4-6) of the inherited step task, the new 
elements specified at this level being taken into ac- 
count in conjunctions with the inherited definitions. 

Note how the constraints (CIO-12) specified in task 
bodies force the intermediate versions to be of a cer- 
tain kind independently of the decomposition of the 
task into subtask (here develop and review). Since 

(C9) is inherited through the task-subtask hierarchy, 
these intermediate versions may not be generic con- 

figuration versions. 

To model the two phase development (i.e. a decom- 

position followed by an integration phase), we must 

add the following definitions to life-cycZe-class: 

CONSTRAINTS 
(Cl31 G-configuration=true* 

component :Class=life-cycle-class. 
(Cl41 I-configuration=true* 

Lauguage=component-version:Language. 
(C15) the versions of all components must have 

same Language. 
(T7) TASK decompose REFINE step 
(Pa71 ON version having Languaga=spec 

or Languagezdesign. 
(PO71 TO version having Lang.uage=design. 

BODY ( 
CONSTRAINTS 

(CM) Language:initiabvalue=design. } 
(T8) TASK integrate 
(pa81 ON version having Language-design. 
(Pe8'1 I-ON version of all components having 

Languagefidesign and Status=released. 
0’08) TO version having Statusqeleased 

or Status-ejected. 

The constraint (Cl3) specifies that the class of the 
components of generic configuration versions must 
be life-cycle-class (or one of its subclass). The con- 
straint (C14) specifies that the Language attribute of 
an instantiated configuration version is the Language 
of its constituting versions. The constraint (C15) is 
what we call a compatibility constraints [15]. It pre- 
vents the mixing of different kinds of versions in alI 
the tasks building instantiated configurations. 

The specification of the decomposition phase (T7) 
is similar to (T4-6) except that the produced and 
intermediate versions must be design versions (C16) 
and thus from (C9) generic configuration versions. 
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imemalcreeofsteponxratch 

The integration phase (T8) is specified as a task 
building instantiated configurations. These tasks are 
characterized by preconditions such as (Pe8,Pe8’). 
The condition (Pe8’) is evaluated on the version sets 
of the different components of a generic configura- 
tion (satisfying Pe8), the instantiated configurations 
already built from this generic configuration or vio- 
lating the compatibility constraints being filtered out 
of the result. As long as the combined evaluations of 
(Pe8) and (Pe8’) yields an empty answer, the task 
(T8) cannot be started. When this task is started 
a working instantiated configuration is created. It 
will become a built instantiated configuration version 
when the developer decides to complete the task. 

Our scenario is incomplete. For simplicity sake, we 
have not talked about the synchronization between 
the different integration phases (i.e. the integration of 
the specification versions must be performed before 
the integration of the prototype versions, etc.). The 
overall goal of the development, which is of course 
to produce an implementation version, can however 
easily be modeled . We merely have to specify this 
goal as a postcondition of a task with a body specified 
by life-cycle-class. We have 

project-class SUBCLASS-OF basic-class 
TASK project 

ON version. 
TO version having Status=released 

and Language=impl. 
BODY { life-cycle-class. } 

6 Dynamic Knowledge Acquisition 

In this section, we develop an example illustrating 
how the system supports dynamic knowledge acqui- 

Figure 2: An object of step-&as 

sition. This is done in two steps. In the first one, 
the knowledge, acquired during the development of 
some objects, is modeled in a new subclass refining 
the class of these objects. In the second step, these 
objects are updated in order to become instances of 
the ne’w subclass. The current system supports only 
update to a target class subclass of the initial object 
class. Other conditions must be satisfied and are 
checked by the system. We wilI discuss them later 
on. 

For example, let’s consider a project to develop a 
query interpreter. An object named QEV of class 
prvjec&cZass is thus created and the task project is 
started on the scratch version of QEV. Let’s now as- 
sume that during the internal development process 
of the task project, it is decided to decompose the 
problem (i.e. start the task decompose). Let’s further 
assume that this task produces a generic configura- 
tion version with three components of class life-cycle- 
class: SYN a syntax checker, SEM a static semantic 
checker and EVL a query ‘evaluator. The develop- 
ment of versions for these components can now pro- 
ceed concurrently. 

We now consider the development of versions of 
EVL. Let’s assume that it is decided not to further 
decompose the problem (start spec rather than de- 
compose). We then have the following scenario. 

After the development of a specification 
(i.e. the subtask develop of spec denoted by 
spec/deveZop is completed) and before the 
specification review, its developer wants to 
document an important decision that he has 
taken about the form of the answer that must 
be returned by the evaluator. 

This is fist modeled by introducing the Answer 
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attribute in a new subclass: 

EVLdoci SUBCLASS-OF life-cycle-class 
ATTRIBUTES 

(A6) Ansaer:[undscidsd,intensional,extensional,bothl. 
(T9) REFINE spec 
(cl71 BODY ( CONSTRAINTS 

Date<datel=SAnsaer=undecided. 
(Date>datei,Date~date2)=SAnsuer=intensional. } 

The attribute (A5) models the Answer form alterna- 
tives while the constraint (Cl7) specifies when and 
what decision has been taken. Note that a task (T9) 
defined as the refinement of an inherited task has the 
same name (here spec) unless a new name is explic- 
itly specified (as in T4). The object EVL must now 
be updated to become an instance of this new class. 
When a new attribute is defined in the target class, 
the user performing the update is prompted for the 
attribute values of each existing versions. Only the 
values satisfying the constraints such as (C17) link- 
ing the new attribute with previous attributes, are 
proposed. In this example, the update will thus be 
performed automatically if there is no version devel- 
oped after dated. 

The next step in our scenario is the following one. 

The specification has now been successfully 
reviewed. The reviewer wants to motivate 
this decision and relate it to the development 
alternatives. Since he thinks that this moti- 
vation is relevant for the other reviewers, he 
wants to share this knowledge with them. 

To model this, the reviewer fist defines the following 
class. 

EVLdoc2 SUBCLASS-OF EVLdocl 
REFINE spec,impl,prot,decompose 

BODY { 
(Cl81 CONSTRAINTS Status=releasedj 

(Answer=intensional;Ansaer=both). } 

The constraint (CD) specifies the decisions that 
must have been taken about the Answer form dur- 
ing the development of a version in order to allow its 
positive review. Since (C18) specialilizes the body 
of the four tasks spec, decompose, prot and impl, it 
affects the review subtask in each of them. For in- 
stance, prot/review will not be allowed to release a 
prototype version if the value of Answer is not in- 
tensional or both on this version. The object EVL 
must now be updated to become an instance of this 
new class. This update will be aborted by the sys- 
tem if there are versions that do not satisfy the new 
constraint (C18). 

We now consider an example of task plan with 
following scenario. 

After the completion of the specification 
phase, the prototype phase is started. The 
developer of this phase wants to plan its work 
and to decompose it in two phases: (1) the 
“successful” development of a prototype ver- 
sion returning an eztensional answer and (2) 
from this version, the “successful” develop- 
ment of a prototype returning an intensional 
answer. 

the 

The developer first defines the following class 
which refines the step task into step-int and step-ext. 

EVLplani SUBCLASS-OF step-class 
(A61 ATTRIBUTES 

Ansaer:[intensional,extensional~. 
(TIO) TASK step-ext REFINE step 
(Polo) TO version having Anawer~extenaional. 

BODY { 
(Cl91 CONSTRAINTS Ansaer=ertensional. } 
(Tll) TASK step-int REFINE step 
(Pell) ON version having Anaaer=extensional. 
(Poll) TO version having Anawsr-intensional. 

BODY { 
(C20) CONSTRAINTS Anauer=intenaional. } 

This new subclass is then re-used for defining the 
body of the develop/prototype task as follows: 

EVLdoc3 SUBCLASS-OF EVLdoc2 
(Tl2) REFINE prot/develop 
(Peil) TO version having local:Ansaer=intentional 

and Ansaer=intensional. 
(Poi?) I;‘ODY { EVLplani. ) 

This definition transforms the basic task, develop of 
prot into a complex task. Except Language, all the 
attributes are redefined locally in the class specify- 
ing the task body, their associated constraints are 
thus not inherited. Note however that some of these 
constraints (Cl,C2, etc.) are inherited by the defin- 
ing class and thus introduced anyway. Practically, 
this means here that (C18) is not inherited allow- 
ing internal positive review of prototype returning 
an extensional answer (i.e. a local inconsistency with 
respect to CM) but (C7,C9,Cll) are inherited con- 
straining the intermediate version to be prototype 
versions. Note also how the key word local: is used in 
(Pe12) to distinguish the internal attribute (A6) from 
the external one (A5). Once again the object EVL 
must now be updated. This update will be aborted 
by the system if versions have already been produced 
by prot/develop. 

Since the plan, knowledge acquired during the pro- 
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totyping phase, has been encapsulated into a class, 
it can be easily re-used by the developer of the im- 
plementation phase as follows: 

EVLdoc4 SUBCLASS-OF EVLdoc3 
REFINE impl/develop 

TO version having local: Anaaer=intensional 
and AnswerGntensional. 

BODY ( EVLplanl. } 

We now assume that all the phases have been com- 
pleted and we discuss a maintenance problem. We 
assume that the top level external trees of EVL con- 
tains a specification (l.l), a prototype (1.2), an im- 
plementation and a scratch version (see thin arrows 
and nodes in Figure 3). 

We consider the following maintenance scenario. 

A check that has not been implemented is de- 
tected. It has not been implemented because 
it has not been specified. 

The identification of the new alternative is modeled 

by 

EVLdoc5 SUBCLASS-OF EVLdoc4 
ATTRIBUTES 

Checkl:[undecided,performed,not-performed]. 

The object EVL must now be updated to an instance 
of this new class. 

The “state” of the spec task is to-refine (i.e. precon- 
dition satisfied by scratch and the specification ver- 
sion 1.1). In order to develop a new specification in- 
cluding the decision to perform the check (i.e. Check1 
= performed), one must first decide if it should be de- 
veloped (1) from scratch or (2) from the previously 
developed specification (1.1). If (1) or backtracking 
to the scratch version is chosen, the internal tree of 
spec on scratch is reestablished. This solution should 
be chosen if some decisions taken during the devel- 
opment of 1.1 must be changed. If on the other hand 
the introduction of the check has no (or few) effects 
on these decisions, the solution (2) should be chosen. 
The completion of these two possible choices are il- 
lustrated in Figure 3. The situation existing before 
the choice is depicted in thin lines and white circle 
versions, while the two possible resulting situations 
are in thick lines and gray circle versions. The rela- 
tionship between the development tree of EVL and 
the overall project is also represented. 

It is possible to specify that the same type of choice 
must be made if a similar situation occurs again by 
refining the task definitions. For instance, the second 
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solution will be modeled as 

I:VLdocG SUBCLASS-OF EVLdocS 
REFINE spec 

ON version having Checkilundecided. 
TO version having Checki-undecided. 

TAS:K spec' REFINE spec 
ON version having Checkl=undecided 

and Id#scratch. 
TO version having Checkl-performed. 

This will allow the system to ensure that whenever 
a new specification including the decision to perform 
the check will be needed, it will be developed from a 
specification where the decision to perform the check 
is not taken. Note that the inheritance mechanism 
makes sure that the knowledge previously acquired 
(among others C18) during the development will be 
re-used during this maintenance phase (i.e. execu- 
tion of spec’). The update of EVL to an instance of 
EVLdoc6 will be aborted by the system if there are 
versions produced by spec with Check1 # undecided 
or if those versions have been produced from versions 
having Check1 # undecided. 

We now assume that all the phases have been com- 
pleted on all the components (i.e. EVL, SYN and 
SEM) and we discuss an integration problem. We 
have the following scenario. 

During the integration phase of prototype 
versions, a check (called Check2 in the sequel) 
that has not been implemented is identified. 
This check can be performed by either SYN 
or SEM. 

It is first modeled on SYN and SEM in a similar way 
Check1 is modeled on EVL in a previous example 
(class EVLdocS) f 11 o owed by an update of SYN and 
SEM to instances of the new class. At the integra- 
tion level it is modeled by the definition of a subclass 
where a new compatibility constraint is introduced 
as follows: 

QEVdocl SUBCLASS-OF project-class 
CONSTRAINTS 

the version of SYN must have CheckZrperforred or 
the version of SEM must have Checklrperformed. 

This constraint prevents the building of any in- 
stances having the same problem and thus ensures 
that no one will have to go through the same bug 
analysis again (for example during the integration of 
implementation versions). 



Figure 3: EVL and QVL 

7 Conclusion 

In this section, we compare our work with other re- 
search and summarize our main contributions. 

Our decision model is similar to the issued based 
model of [20]. Our approach can also be seen as a 
complementary and intermediate approach as com- 
pared with language specific approaches such as in 
process management, the transformational approach 
[l] and in configuration management, the approach 
proposed by [27]. 

Tasks can be seen as contracts [4] whose terms have 
been formalized in a system interpretable manner. 
Task formalization in preconditions and postcondi- 
tions has been influenced by work done in process 
management [26] and more specifically in tool inte- 
gration such as [14], ODIN [3], MARVEL [8]. We are 
now currently studying the integration of task de- 
scriptions with tool descriptions as proposed in [14]. 
This will allow us to specify what tools can be used 
within a task. We are also studying the feasibility 
of inferring task plans from task descriptions with 
techniques similar to those used in MARVEL. 

As far as we know, there is no equivalent approach 

proposed in configuration management. This is the 
first contribution of this paper. Note however that 
the conflict detection mechanism can be seen as an 
application,. in version control, of predicate locking 
as proposed in [5] and should be contrasted with the 
explicit object locking of RCS [24]. The above men- 
tioned inference mechanism should allow us to sup- 
port conflict prevention rather than detection. 

Our language allows us to specify process programs 
or life cycle as in the process programming approach 
[16]. However, as MELD [9], our language does not 
have any explicit control structures. This property 
has allowed us to integrate two structuring mech- 
anisms, the class-subclass and the task-subtask hi- 
erarchies. It is this combination that gives to our 
approach the power necessary to support not only a 
priori life cycles but also dynamic refinements of this 
knowledge (e.g. dynamic task splitting as subcon- 
tracts issued in ISTAR [22]) in an integrated manner. 
This is the other main contribution of this paper. 

The support of the dynamic knowledge acquisition 
makes that our system can also at least partially sup- 
port “faking the process” [18] or less constructive ap- 
proaches. With respect to these approaches, the con- 
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sequences of the system limited support must still be 
assessed. Similarly the problems of (logical) consis- 
tency inherent to any dynamic acquisition have only 
been partially solved [7]. 

We are currently studying features allowing one 
to make explicit in the environments other aspects 
of the development process such as resource alloca- 
tion and other project management issues. Finally, 
since an environment will not be fully practical with- 
out a powerful user interface, we are now developing 
graphical browsers and other visualization tools2. 
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