
A Process-Oriented Approach to Configuration Management

Yves Bernard and Pierre Lavency
Philips Research Laboratory, Brussels, Belgium

Abstract

We present a framework integrating concepts from con-
figuration management and process management. A lan-
guage, interpretable by the environment, is proposed in or-
der to specify the development process of versions and con-
figurations. Two structuring mechanisms are provided: a
class-subclass hierarchy and a task-subtask hierarchy. The
resulting expressive power is illustrated on some examples.
We describe then how the environment supports the pro-
cesses specified in this language as well as how it supports
the dynamic refinement of process specifications.

Keywords: development process modeling, configuration

management, generic environments.

1 Introduction

It is now becoming widely accepted that one of
the major difficulties of maintenance problems stems

from the fact that some knowledge, available during

development phases, is not available any more dur-
ing maintenance phases [l]. Typically this includes

knowledge about. the development process itself or
about the different steps, the order in which these

steps have been applied, the decisions taken at each
step, etc.

Process modeling has thus become an active re-
search area and efforts have been made to explicitly
represent and make use of knowledge about the pro-

cess in the environment, ranging from explicit repre-
sentation of the life cycle ([26], IPSE2.5 [17]) or top

level steps to rules describing tools (ODIN [3]) and
elementary activities ([19], [14], MARVEL [8]).

At the same time configuration management tech-
niques have been developed to help maintaining large
software systems. Software configuration manage-
ment has been defined in [25] as the discipline of con-

permission to copy without fee alI or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copwt notice and the title of the pu~kation and
its date appear, and notice 1s given that copying is by perwsion of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or spectic permission.

trolling the evolution of complex software systems.
Although there is an obvious relationship between
the evolution of the software and the software de-
velopment process, configuration management (CM)
and process management (PM) facilities are usually
loosely coupled. PM oriented environments provide
system modeling facilities (MAKE [S]) as low level

process description [23] but most of the time rely on

tools such as RCS [24] for version control while CM
oriented environments such as DSEE [ll] do not re-

ally support emerging PM concepts such as activities
or contracts of ISTAR [22].

In this paper, we describe a system where CM and
PM concepts are integrated. In section 2, we de-
velop our process model approach. In section 3, WF
present our configuration management model stress-
ing the similarities between CM and PM problems.
In section 4, we present our integrating framework.
The next sections are dedicated to examples. WE
conclude by a brief section positioning our approach
with respect to related research.

2 Process Model

In the literature two main approaches to process
modeling can be distinguished.

On the one hand, in the process programming ap-
proach [16], the development process is described as
a program before the development is started. This
program is then executed by the environment and the
developer’s role is to provide the information required
during the process execution. From the environment
point of view, the process used by the developer to
obtain this information does not matter and is buried
in documents.

On the other hand, an environment such as IS-
TAR [4] focuses on capturing how this information
has been acquired. The definition of the process is
seen as an integral part of the development itsen
and is one of the developer’s task. To support this
view, ISTAR keeps track of the contracts dynami-

0 1989 ACM 0270~5257/89/0500/0320$00.75
320

Recommended by: Leon Ostenveil

tally issued by the developers in the contract hier-
archy. However, the acquired knowledge is closer to
a process trace (or program trace) than to a process
description (or program). For instance, the terms of
the contract (characteristics of the objects to be pro-
duced) and the relationships between subcontracts
(sequence, parallel, etc.), are not known by the en-
vironment. Consequently, the functionality provided
by the environment is reduced to the management of
the client/contractor protocol.

In this paper, the process is a priori described in
terms of classes (similar to process programs). This
description can then be refined dynamically during
the development (similar to issuing contracts dynam-
ically).

From an architectural point of view, supporting
this process model means that we have to go from
generic environments instantiated with a process de-
scription to environments able to deal with dynam-
ically acquired process descriptions. This raises,
among others, the problem of maintaining the con-
sistency of the knowledge about the process.

From the user’s (developer’s) point of view, this
model requires that he formalizes his development
process. This should be contrasted with the user’s
role in environments tracing the user’s actions. This
extra burden is put on the developers in order to have
higher level descriptions that can be re-used later on
during maintenance phases.

3 Conflguration Management Model

In this section we review the different elements of our
CM system emphasizing the similarities between CM
and PM problems.

To control the evolution of the different compo-
nents or modules, CM systems rely on version control
systems (RCS [24], SCCS [21]). A version control
system keeps track of the modifications by keeping
different versions of a component. Versions are im-
mutable and changes are made by introducing new
versions (obtained by modification of a previous ver-
sion copy). The set of versions associated with a
component or the version family is usually structured
into a history tree, the sons of a version A being the
versions derived from A.

The functionality of version control systems de-
scribed above is quite similar to the functionality
of PM systems tracing user’s actions. The system
knows what modifications have been done but does
not know their semantics or what assumptions have

been made, what design decisions have been taken,
why they have been taken, etc. Furthermore, there is
usually no way to a priori specify sequences of steps
that must be applied in order to develop a compo-
nent although these development procedures (“life
cycles”) exist in all organizations.

As pointed out in [25], very little attention has
been paid to facilities allowing a top down approach
or change request driven CM. MRCS [lo] is an early
attempt to support the notion of change request. The
difficulty to impose such a system to the developers
reported in [lo] must be related to the discussion,
in the previous section, about the user’s role. The
DSEE task concept (“high level” tasks split into sub-
tasks) can be seen as another attempt.

Large software products are not monolithic but
rather they are composed of often many other com-
ponents. Since these components exist now in differ-
ent versions, we have to deal with a new kind of ob-
jects called generic configurations (system model in
(111). A generic configuration is a structured object
containing references to version families. The config-
uration structure represents the relationships exist-
ing between the different components (is-used-by, is-
included-in, etc.). A product is then an instantiated
configuration (bound configuration thread in Ill]) or
a structured object obtained by substituting, in the
generic configuration, each component name w&h the
name of a specific component version. In our frame-
work, an instantiated configuration is specified by a
query denoting intensionaly its components versions.
For this purpose, we use a relational query language
extended with preferences described in [12,15].

From a PM point of view the notion of generic con-
figuration is important to support top down software
developments. As a matter of fact, a generic con-
figuration is an abstract description of a software,
independent of the low level design decisions that
can be taken while developing its components. Fur-
thermore, product building rules (or elementary pro-
cess programs [23]) describing how to construct de-
rived objects (i.e. object modules, executables, etc.)
a la Make, can now be factored out of the specific
instantiated configuration and associated with the
generic configuration [ll]. A previous paper [2] de-
scribes how it is possible to further factor out the
product building rules by typing the confIguration
structures and associating the rules with the co&g-
uration types.

In the next section, we present a framework where

321

CM and PM facilities are tightly coupled. The sys-
tem described here (called the task manager or TM)
is only a component of our experimental environ-
ment. As far as this component is concerned, there
are basically three types of versions: the generic con-
figurations (viewed as a list of version families), the
instantiated configurations (viewed as a list of ver-
sions) and the atomic versions. One should however
keep in mind that this is only the predef!ned Task
Manager view, In the environment we are elaborat-
ing, complex objects are typed [13]. On top of such
a platform, the TM can be customized to take into
account the knowledge about the different types of
atomic and other predefined kinds of versions.

4 Overview

This section surveys and motivates the main features
of our system. Our goal is here to be able to specify
the development process of version trees (i.e. version
family objects).

First, version attributes can be declared with their
range of values. The attribute declarations specify
the general version characteristics such as date, au-
thor, etc. as well as the relevant design decisions. An
attribute models then a decision, its possible values
represent the different alternatives and its value on a
given version indicates what decision has been taken
during the development of this version. Note that
although the content of a version is immutable, its
attribute values can be changed.

The development process or how the different ver-
sions must be developed is specified as a set of tasks.
A task is described in terms of a precondition and
a postcondition on the version attribute values. The
precondition specifies on which kind of versions the
task can be performed and the postcondition what
kind of versions the task can produce (i.e. creation
of a new version or change of the attributes of an
existing version). They make explicit in the environ-
ment when a task can be performed and what are its
effects (possible decisions that can be taken, etc.).

Constraints allow us to factor out of the task de-
scriptions some knowledge about the development
process or to specify knowledge that is independent
of the decomposition in tasks. Constraints are re-
lationships between attributes or conditions on at-
tributes that must be true at any time or when some
specific events occur (i.e. the creation of a new ver-
sion and the change of attributes of an existing ver-
sion) independently of the task triggering the event.

These c:onstraints are expressed as “directed” closed
well-formed formulas written in a Prolog style, with
references to the attributes of a version and of the
versions derived from this version, before and after
the events.

I?reconditions and postconditions can be seen as
task declarations. The task body further specifies
how the task must be performed. This is speci-
fied with the same elements as the overall process
(i.e. attributes, constraints and subtasks). These el-
ements specify how intermediate versions and goal
versions (i.e. satisfying the task postcondition) are
developed from the initial versions (i.e. satisfying the
task precondition). Since the attributes and con-
straints model knowledge independent of task decom-
positio.n, they are inherited through the task-subtask
hierarchy. However, in order to allow some local in-
consistency with respect to this knowledge, the inher-
itance can be blocked at a given level by redefinitions
in the corresponding task body.

The notion of class is introduced in this frame-
work as an encapsulation mechanism for attributes,
constraints and task declarations describing a given
development process. The same process “program”
(class) is now shared by all the version family objects
of a same class. Furthermore, a class can be re-used
in different task bodies.

Finally, as in object-oriented languages, the classes
are structured in a class-subclass hierarchy with in-
heritance of all the definitions from the class to the
subclass. It allows us to incrementally describe the
process by successive refinements and specializations.
This is also a key feature as far as the dynamic knowl-
edge acquisition is concerned. As a matter of fact,
this acquisition can now be seen as a combination of
two steps. In the first step, the knowledge, acquired
during the development of an object, is modeled in a
new subclass refming the class of this object. In the
second step, the object is updated in order to become
an instance of the new subclass.

5 A Priori Knowledge Specification

In this section, we develop a simple example illus-
trating how the a priori knowledge about the devel-
opment process of components or version families is
modeled in terms of class specifications.

The root class is called basic-class. It has three
predefined attributes: Id the version identifier, G-
configuration and I-configuration, indicating whether
or not a version is a generic (resp. instantiated) con-

322

figuration version. These attributes are automati-
cally maintained by the system.

We first model two general version properties, the
creation date and the author by defining a new class
dated-class as a sublass of basic-class:

dated-class SUBCLASS-OF basic-class
ATTRIBUTES

(Al) Date: String.
(A2) Author: Name.

CONSTRAINTS
(Cl) get-date(Date:initial-value).
(C2> get-user(Author:initial-value).
(C3) Date: old-value = Date:new-value.
(C4) Author: old-value = Author: new-value.

The attributes Date (Al) and Author (A2) model the
corresponding general properties. The argument of
the predicate get-date (resp. get-user) unifies to the
current date (resp. user). The constraints (Cl) and
(C2) must be satisfied when a new version is created.
They specify that no matter what tasks produce a
new version, its Date (resp. Author) will be initial-
ized to the current date (resp. user). The constraints
(C3) and (C4) must be satisfied when attributes of
an existing version are changed. They specify that
those attributes may not be changed, no matter what
tasks change the version attributes.

We now want to model the following scenario.

The “successful” development of a version
from another is decomposed into two basic

steps, a version development step and a re-
view step. A version is “successfully” devel-

oped when it has been positively reviewed. A
negative review means that further develop-
ments cannot be based on the reviewed ver-

sion or on any versions developed from this
version’. Furthermore, the development of
successive intermediate versions which must
not be reviewed is allowed.

To support the above scenario, a new class is in-
troduced:

step-class SUBCLASS-OF dated-class
ATTRIBUTES

(A31 Status:[exp.rejected.to-reviea.releasedJ.
CONSTRAINTS

(CS) Statusqejected=$next-version:Status=rejected.
(C6) Id=scratchJStatus=erp.

‘The decision of a negative review on a version can be taken
well after other versions have been derived from it. For sim-
plicity sake, we have not introduced in the scenario, the notion
of “soft” negative review allowing further development or en-
hancement from the reviewed version.

It is specified as a subclass of dated-class and it thus
inherits the attributes and constraints defined at this
level. The attribute Status (A3) is introduced to
model the decisions involved in the scenario (released:
a positive review, rejected: a negative review, to-
review: not yet reviewed but must be reviewed, exp:
not yet reviewed and must not be reviewed). The
constraint (C5) specifies that all the versions derived
from a rejected version are themselves rejected. This
constraint ensures that the rejection decision on a
version will be propagated on the versions derived
from this version, no matter who takes this decision.
Currently only one propagation “direction” is sup-
ported: from a version to its derived version. The
constraint (C6) specifies the status of an empty ver-
sion created when the module is initialized. These
constraints must always be satisfied.

The step-class must now be completed with task
specifications as follows:

(Tl) TASK step
(Pei) ON version.
(Pal) TO version having Statuslreleaaed.
(El) BODY {
n-2) TASK develop
(Pe2) ON version having Statusfrejectsd

preferring version having max Date.
mm TO version having Status#released.
(T3) TASK review
(Pe3) ON version having Status-to-review.
(PO31 TO version having Status=rejected

or Status-released.
(W) MODE attribute-update. }

The global “successful” development is called step
and its overall specification in terms of precondi-
tion (Pel) and postcondition (Pol) is straightfor-
ward. The step task is itself composed of the two
subtasks develop and review defined similarly by a
precondition and a postcondition. These subtasks
are basic (no associated body). Note how the pref-
erence is used in (Pe2) to model the notion of suc-
cessive development. The mode (M3) is used to fur-
ther describe the effect of a task. It specifies if the
task updates the attributes of an existing version, if
it builds a new version or if both are allowed (the
default case).

The definition of a complex task such as step di-
vides a version tree of class step-class into differ-
ent subtrees. The external tree contains the versions
produced by the task and on which the task is ap-
plied. An internal tree is associated to each version
on which the task has been applied. It contains the

323

versions on which the subtasks, specified in the body
(Bl), are applied and the versions produced by these
subtasks. With respect to the internal trees, the def-
initions of a task body play a role similar to a class.
It is possible to specify here all the elements of a
class: attributes, constraints as well as tasks. The
attributes and constraints defined above in the task-
subtask hierarchy are inherited unless they are rede-
fined internally. Here all the attributes (Al-3) and
their constraints (Cl-6) are inherited in (Bl).

The Task Manager interprets the class definitions
and shows what tasks can be started, ensures that
only these tasks are started and detects conflicts be-
tween tasks. In the current system, there is no at-
tempt to automatically start the tasks. The users
must thus explicitly start the tasks as well as com-
plete them. A started task is interpreted by the TM
as an indication that the task must be performed to
solve the problem at hand.

Starting at the top level external tree, the TM de-
termines the “state” of each task. To do this, it eval-
uates the task precondition on the external task tree
as follows:

1. If there is a unique version satisfying the pre-
condition, the task state is executable and can
be started on this version.

2. If there is no version satisfying the precondi-
tion, the task is not-executable and cannot be
started.

3. If there are more than one version satisfying the
precondition, the task is to-refine. The task can
be started provided that first a unique version
among the versions satisfying the precondition
is selected.

Moreover, the subtasks of a task cannot be started
as long as the task itself is not started. When a com-
plex task (i.e. with a body) is started on a version,
the TM determines the subtask “states” by evaluat-
ing their preconditions on the corresponding internal
task tree. Initially, this tree consists of the version on
which the complex task is applied. It is then enriched
by the versions produced by the subtasks. It will be
reestablished whenever the same task (i.e. with the
same naine) is reexecuted on the same version. When
a basic task is started, the system merely creates a
working copy of the version on which the task is ap-
plied (with only read permission in update-attribute
mode). The working copy can then be viewed or
modified by tools.

Figure 1: An object of step-&us

For example, Figure 1 represents a snapshot of
an object of step-class taken at a time where step
is started from the scratch version and after some
executions of develop. The two levels correspond to
the two level task-subtask decomposition. Versions
on which a task is executable are represented in gray.
At this point, develop and review are executable: the
former can be started on 1.4 while the latter can be
started on 1.3.

The decision to complete a task is also user initi-
ated. In the task external tree, this can result either
in the change of the attributes of an existing version
or in the production of a new version. The “pro-
duction” means the creation of a new version when
the task is basic (i.e. “check in”) while it means the
“export” of an internal version into the external tree
when the task is not basic.

Besides ensuring that the postcondition is satisfied,
the role of the TM is here to check if there are no
conflicts between tasks. A conflict is detected if:

1. the version on which a task is started does not
satisfy the task precondition any more;

2. a task is completed when some of its subtasks
are started.

These are conflict situations since the decision to
start a task on a version is interpreted as user in-
dication to the TM that this task must be executed.

Let’s now assume that develop is started on 1.4
from the situation described in Figure 1. This in-
dicates that further development from this version
must be done and is illustrated in Figure 2 where
the following events (to-5) are also depicted. The re-
view task is started on 1.3 and end up with a negative
result (to). In order to take (C5) into account, the
system must set the Status of 1.4 to rejected. It de-
tects a first type of conflict since 1.4 does not satisfy
(Pe2) any more. In this case the developer and the
reviewer involved have to negotiate who should take
the precedence. The next events in Figure 2 then de-
scribes a situation resulting from a precedence of the

324

reviewer: 1.4 is set to rejected (tl) and the system
then backtracks develop on 1.2 (t2). This is followed
by a developer’s decision to further backtrack by a
rejection of 1.2 (ts), then the development of a new
intermediate version (1.1.1.1) followed by the devel-
opment and positive review of version 1.1.1.2 (t4).
Then the step task is completed on 1.1.1.2 (t5). If
at that time develop has been started on 1.1.1.2, a
second type of conflict would be detected.

We now refine OUT scenario as follows:

We distinguish four kinds of versions: the
specification, the design, the prototype and
the implementation versions. They can be
developed in two different ways. The first
way is to split the development in three suc-
cessive phases that must (“successfully”) de-
velop respectively a specification, a prototype
and an implementation version from the ver-
sion produced by the previous phase. The
second way is to split the development in two
phases. In the first phase, the problem is de-
composed and a generic configuration version
or a design version is (“successfully”) pro-
duced. In the second phase, the specifica-
tion (resp. prototype and implementation)

-\ versions of the components identified in the
generic configuration, are integrated to pro-
duce the final specification (resp. prototype
and implementation) versions.

We first model the three phase development in a
new class called life-cycle-class.

life-cycle-class SUBCLASS-OF step-class
ATTRIBUTES

014) Language : Cspec,design,impl,protl.
CONSTRAINTS

(C7) Language:old-value=Language:new-value.
(C8) Id=scratch + Language=spec.
cc91 Language=design e C-configuration=true.
(T4) TASK spec REFINE step
(pa41 ON version having Language=spec.
(Po4) TO version having Language=spec.

BODY {
CONSTRAINTS

(ClO) Language:initIal-value=spec. }
(T5) TASK prot REFINE step
(Pe5) ON version having Lauguage=spec.
(Po5) TO version having Languaga=prot.

BODY {
CONSTRAINTS

(Cl11 Language :initiaI-vaIue=prot . }
(T6) TASK imp1 REFINE step
(Pe6) ON version having Language=prot.
(Po6) TO version having Language=impl.

BODY {
CONSTRAINTS

(Cl21 Language :iuitiaI-vaIue=impl. }

The attribute Language is introduced to model the
different kinds of versions. The constraint (C7)

specifies that it may not be changed and (C8) the
attribute value on the initial version. The con-
straint ((39) specifies that design versions are the only

generic configuration versions.
The three phases are specified by three different re-

finements (T4-6) of the inherited step task, the new
elements specified at this level being taken into ac-
count in conjunctions with the inherited definitions.

Note how the constraints (CIO-12) specified in task
bodies force the intermediate versions to be of a cer-
tain kind independently of the decomposition of the
task into subtask (here develop and review). Since

(C9) is inherited through the task-subtask hierarchy,
these intermediate versions may not be generic con-

figuration versions.

To model the two phase development (i.e. a decom-

position followed by an integration phase), we must

add the following definitions to life-cycZe-class:

CONSTRAINTS
(Cl31 G-configuration=true*

component :Class=life-cycle-class.
(Cl41 I-configuration=true*

Lauguage=component-version:Language.
(C15) the versions of all components must have

same Language.
(T7) TASK decompose REFINE step
(Pa71 ON version having Languaga=spec

or Languagezdesign.
(PO71 TO version having Lang.uage=design.

BODY (
CONSTRAINTS

(CM) Language:initiabvalue=design. }
(T8) TASK integrate
(pa81 ON version having Language-design.
(Pe8'1 I-ON version of all components having

Languagefidesign and Status=released.
0’08) TO version having Statusqeleased

or Status-ejected.

The constraint (Cl3) specifies that the class of the
components of generic configuration versions must
be life-cycle-class (or one of its subclass). The con-
straint (C14) specifies that the Language attribute of
an instantiated configuration version is the Language
of its constituting versions. The constraint (C15) is
what we call a compatibility constraints [15]. It pre-
vents the mixing of different kinds of versions in alI
the tasks building instantiated configurations.

The specification of the decomposition phase (T7)
is similar to (T4-6) except that the produced and
intermediate versions must be design versions (C16)
and thus from (C9) generic configuration versions.

325

imemalcreeofsteponxratch

The integration phase (T8) is specified as a task
building instantiated configurations. These tasks are
characterized by preconditions such as (Pe8,Pe8’).
The condition (Pe8’) is evaluated on the version sets
of the different components of a generic configura-
tion (satisfying Pe8), the instantiated configurations
already built from this generic configuration or vio-
lating the compatibility constraints being filtered out
of the result. As long as the combined evaluations of
(Pe8) and (Pe8’) yields an empty answer, the task
(T8) cannot be started. When this task is started
a working instantiated configuration is created. It
will become a built instantiated configuration version
when the developer decides to complete the task.

Our scenario is incomplete. For simplicity sake, we
have not talked about the synchronization between
the different integration phases (i.e. the integration of
the specification versions must be performed before
the integration of the prototype versions, etc.). The
overall goal of the development, which is of course
to produce an implementation version, can however
easily be modeled . We merely have to specify this
goal as a postcondition of a task with a body specified
by life-cycle-class. We have

project-class SUBCLASS-OF basic-class
TASK project

ON version.
TO version having Status=released

and Language=impl.
BODY { life-cycle-class. }

6 Dynamic Knowledge Acquisition

In this section, we develop an example illustrating
how the system supports dynamic knowledge acqui-

Figure 2: An object of step-&as

sition. This is done in two steps. In the first one,
the knowledge, acquired during the development of
some objects, is modeled in a new subclass refining
the class of these objects. In the second step, these
objects are updated in order to become instances of
the ne’w subclass. The current system supports only
update to a target class subclass of the initial object
class. Other conditions must be satisfied and are
checked by the system. We wilI discuss them later
on.

For example, let’s consider a project to develop a
query interpreter. An object named QEV of class
prvjec&cZass is thus created and the task project is
started on the scratch version of QEV. Let’s now as-
sume that during the internal development process
of the task project, it is decided to decompose the
problem (i.e. start the task decompose). Let’s further
assume that this task produces a generic configura-
tion version with three components of class life-cycle-
class: SYN a syntax checker, SEM a static semantic
checker and EVL a query ‘evaluator. The develop-
ment of versions for these components can now pro-
ceed concurrently.

We now consider the development of versions of
EVL. Let’s assume that it is decided not to further
decompose the problem (start spec rather than de-
compose). We then have the following scenario.

After the development of a specification
(i.e. the subtask develop of spec denoted by
spec/deveZop is completed) and before the
specification review, its developer wants to
document an important decision that he has
taken about the form of the answer that must
be returned by the evaluator.

This is fist modeled by introducing the Answer

326

attribute in a new subclass:

EVLdoci SUBCLASS-OF life-cycle-class
ATTRIBUTES

(A6) Ansaer:[undscidsd,intensional,extensional,bothl.
(T9) REFINE spec
(cl71 BODY (CONSTRAINTS

Date<datel=SAnsaer=undecided.
(Date>datei,Date~date2)=SAnsuer=intensional. }

The attribute (A5) models the Answer form alterna-
tives while the constraint (Cl7) specifies when and
what decision has been taken. Note that a task (T9)
defined as the refinement of an inherited task has the
same name (here spec) unless a new name is explic-
itly specified (as in T4). The object EVL must now
be updated to become an instance of this new class.
When a new attribute is defined in the target class,
the user performing the update is prompted for the
attribute values of each existing versions. Only the
values satisfying the constraints such as (C17) link-
ing the new attribute with previous attributes, are
proposed. In this example, the update will thus be
performed automatically if there is no version devel-
oped after dated.

The next step in our scenario is the following one.

The specification has now been successfully
reviewed. The reviewer wants to motivate
this decision and relate it to the development
alternatives. Since he thinks that this moti-
vation is relevant for the other reviewers, he
wants to share this knowledge with them.

To model this, the reviewer fist defines the following
class.

EVLdoc2 SUBCLASS-OF EVLdocl
REFINE spec,impl,prot,decompose

BODY {
(Cl81 CONSTRAINTS Status=releasedj

(Answer=intensional;Ansaer=both). }

The constraint (CD) specifies the decisions that
must have been taken about the Answer form dur-
ing the development of a version in order to allow its
positive review. Since (C18) specialilizes the body
of the four tasks spec, decompose, prot and impl, it
affects the review subtask in each of them. For in-
stance, prot/review will not be allowed to release a
prototype version if the value of Answer is not in-
tensional or both on this version. The object EVL
must now be updated to become an instance of this
new class. This update will be aborted by the sys-
tem if there are versions that do not satisfy the new
constraint (C18).

We now consider an example of task plan with
following scenario.

After the completion of the specification
phase, the prototype phase is started. The
developer of this phase wants to plan its work
and to decompose it in two phases: (1) the
“successful” development of a prototype ver-
sion returning an eztensional answer and (2)
from this version, the “successful” develop-
ment of a prototype returning an intensional
answer.

the

The developer first defines the following class
which refines the step task into step-int and step-ext.

EVLplani SUBCLASS-OF step-class
(A61 ATTRIBUTES

Ansaer:[intensional,extensional~.
(TIO) TASK step-ext REFINE step
(Polo) TO version having Anawer~extenaional.

BODY {
(Cl91 CONSTRAINTS Ansaer=ertensional. }
(Tll) TASK step-int REFINE step
(Pell) ON version having Anaaer=extensional.
(Poll) TO version having Anawsr-intensional.

BODY {
(C20) CONSTRAINTS Anauer=intenaional. }

This new subclass is then re-used for defining the
body of the develop/prototype task as follows:

EVLdoc3 SUBCLASS-OF EVLdoc2
(Tl2) REFINE prot/develop
(Peil) TO version having local:Ansaer=intentional

and Ansaer=intensional.
(Poi?) I;‘ODY { EVLplani.)

This definition transforms the basic task, develop of
prot into a complex task. Except Language, all the
attributes are redefined locally in the class specify-
ing the task body, their associated constraints are
thus not inherited. Note however that some of these
constraints (Cl,C2, etc.) are inherited by the defin-
ing class and thus introduced anyway. Practically,
this means here that (C18) is not inherited allow-
ing internal positive review of prototype returning
an extensional answer (i.e. a local inconsistency with
respect to CM) but (C7,C9,Cll) are inherited con-
straining the intermediate version to be prototype
versions. Note also how the key word local: is used in
(Pe12) to distinguish the internal attribute (A6) from
the external one (A5). Once again the object EVL
must now be updated. This update will be aborted
by the system if versions have already been produced
by prot/develop.

Since the plan, knowledge acquired during the pro-

327

totyping phase, has been encapsulated into a class,
it can be easily re-used by the developer of the im-
plementation phase as follows:

EVLdoc4 SUBCLASS-OF EVLdoc3
REFINE impl/develop

TO version having local: Anaaer=intensional
and AnswerGntensional.

BODY (EVLplanl. }

We now assume that all the phases have been com-
pleted and we discuss a maintenance problem. We
assume that the top level external trees of EVL con-
tains a specification (l.l), a prototype (1.2), an im-
plementation and a scratch version (see thin arrows
and nodes in Figure 3).

We consider the following maintenance scenario.

A check that has not been implemented is de-
tected. It has not been implemented because
it has not been specified.

The identification of the new alternative is modeled

by

EVLdoc5 SUBCLASS-OF EVLdoc4
ATTRIBUTES

Checkl:[undecided,performed,not-performed].

The object EVL must now be updated to an instance
of this new class.

The “state” of the spec task is to-refine (i.e. precon-
dition satisfied by scratch and the specification ver-
sion 1.1). In order to develop a new specification in-
cluding the decision to perform the check (i.e. Check1
= performed), one must first decide if it should be de-
veloped (1) from scratch or (2) from the previously
developed specification (1.1). If (1) or backtracking
to the scratch version is chosen, the internal tree of
spec on scratch is reestablished. This solution should
be chosen if some decisions taken during the devel-
opment of 1.1 must be changed. If on the other hand
the introduction of the check has no (or few) effects
on these decisions, the solution (2) should be chosen.
The completion of these two possible choices are il-
lustrated in Figure 3. The situation existing before
the choice is depicted in thin lines and white circle
versions, while the two possible resulting situations
are in thick lines and gray circle versions. The rela-
tionship between the development tree of EVL and
the overall project is also represented.

It is possible to specify that the same type of choice
must be made if a similar situation occurs again by
refining the task definitions. For instance, the second

328

solution will be modeled as

I:VLdocG SUBCLASS-OF EVLdocS
REFINE spec

ON version having Checkilundecided.
TO version having Checki-undecided.

TAS:K spec' REFINE spec
ON version having Checkl=undecided

and Id#scratch.
TO version having Checkl-performed.

This will allow the system to ensure that whenever
a new specification including the decision to perform
the check will be needed, it will be developed from a
specification where the decision to perform the check
is not taken. Note that the inheritance mechanism
makes sure that the knowledge previously acquired
(among others C18) during the development will be
re-used during this maintenance phase (i.e. execu-
tion of spec’). The update of EVL to an instance of
EVLdoc6 will be aborted by the system if there are
versions produced by spec with Check1 # undecided
or if those versions have been produced from versions
having Check1 # undecided.

We now assume that all the phases have been com-
pleted on all the components (i.e. EVL, SYN and
SEM) and we discuss an integration problem. We
have the following scenario.

During the integration phase of prototype
versions, a check (called Check2 in the sequel)
that has not been implemented is identified.
This check can be performed by either SYN
or SEM.

It is first modeled on SYN and SEM in a similar way
Check1 is modeled on EVL in a previous example
(class EVLdocS) f 11 o owed by an update of SYN and
SEM to instances of the new class. At the integra-
tion level it is modeled by the definition of a subclass
where a new compatibility constraint is introduced
as follows:

QEVdocl SUBCLASS-OF project-class
CONSTRAINTS

the version of SYN must have CheckZrperforred or
the version of SEM must have Checklrperformed.

This constraint prevents the building of any in-
stances having the same problem and thus ensures
that no one will have to go through the same bug
analysis again (for example during the integration of
implementation versions).

Figure 3: EVL and QVL

7 Conclusion

In this section, we compare our work with other re-
search and summarize our main contributions.

Our decision model is similar to the issued based
model of [20]. Our approach can also be seen as a
complementary and intermediate approach as com-
pared with language specific approaches such as in
process management, the transformational approach
[l] and in configuration management, the approach
proposed by [27].

Tasks can be seen as contracts [4] whose terms have
been formalized in a system interpretable manner.
Task formalization in preconditions and postcondi-
tions has been influenced by work done in process
management [26] and more specifically in tool inte-
gration such as [14], ODIN [3], MARVEL [8]. We are
now currently studying the integration of task de-
scriptions with tool descriptions as proposed in [14].
This will allow us to specify what tools can be used
within a task. We are also studying the feasibility
of inferring task plans from task descriptions with
techniques similar to those used in MARVEL.

As far as we know, there is no equivalent approach

proposed in configuration management. This is the
first contribution of this paper. Note however that
the conflict detection mechanism can be seen as an
application,. in version control, of predicate locking
as proposed in [5] and should be contrasted with the
explicit object locking of RCS [24]. The above men-
tioned inference mechanism should allow us to sup-
port conflict prevention rather than detection.

Our language allows us to specify process programs
or life cycle as in the process programming approach
[16]. However, as MELD [9], our language does not
have any explicit control structures. This property
has allowed us to integrate two structuring mech-
anisms, the class-subclass and the task-subtask hi-
erarchies. It is this combination that gives to our
approach the power necessary to support not only a
priori life cycles but also dynamic refinements of this
knowledge (e.g. dynamic task splitting as subcon-
tracts issued in ISTAR [22]) in an integrated manner.
This is the other main contribution of this paper.

The support of the dynamic knowledge acquisition
makes that our system can also at least partially sup-
port “faking the process” [18] or less constructive ap-
proaches. With respect to these approaches, the con-

329

sequences of the system limited support must still be
assessed. Similarly the problems of (logical) consis-
tency inherent to any dynamic acquisition have only
been partially solved [7].

We are currently studying features allowing one
to make explicit in the environments other aspects
of the development process such as resource alloca-
tion and other project management issues. Finally,
since an environment will not be fully practical with-
out a powerful user interface, we are now developing
graphical browsers and other visualization tools2.

Acknowledgement: We would like to thank
M. Lacroix, M. Vanhoedenaghe, R. Conradi and J.
Mueller for their useful comments and suggestions.

References

[II

PI

[31

141

El

161

PI

PI

PI

R. Balrcr, “A 15 Year Perspective on Automatic Pro-
gramming”, IEEE Transaction on Software Engineering,
SE-ll(ll), November 1985.

Y. Bernard, M. Lacroix, P. Lavency, M. Vanhoedenaghe,
“Configuration Management in an Open Environment”,
1st European Software Engineering Conference, Septem-
ber 1987, Strasbourg, France.

G.M. Clemm, “The ODIN System: An Object Manager
for Extensible Software Environments”, Phd Thesis, Uni-
versity of Colorado-Boulder, Department of Computer
Science, 1986.

M. Dowson, “An Integrated Project Support Environ-
ment”, 2nd ACM/SIGSOFT/SIGPLAN software Engi-
neering Symposium on Practical Development Support
Environment, ACM SIGPLAN Notices, vol. 2, no. 1, Jan-
uary 1987.

K.P. Eswaran, J.N. Gray, R.A. Lories, I.L. Traiger, “The
Notions of Consistency and Predicate Locks in a Data
Base System”, CACM 19, 11, November 1976.

S. I. Feldman, “Make -A Program for Maintaining Com-
puter Programs”, Software - Practice and Experience 9,
4, April 1979.

E. Gribomont, M. Lacroix, P. Lavency, “Consistency
of Compatibility Constraints in Configuration Manage-
ment”, COMPEURO 88, Brussels, Belgium, April 1988.
G.E Kaiser, P.H. Feiler, “An Architecture for an Intel-
ligent Assistance in Software Development”, 9th Inter-
national Conference on Software Engineering, Monterey,
California, USA, March 1987, 180-188.

G. Kaiser, D. Garlan,“Melding Software System from
Reusable building blocks”, IEEE Software, July 1987, 17-
24.

[lo] D.B. Knudsen, A. Barofsky and L.R. Sats. “A modifica-
tion request control system”. Proceeding of the 2nd In-
ternational Conference on Software Engineering, 1977.

[ll] D.B Leblanc, and R. Chase, “Computer-aided software
engineering in distributed environment “, ACM SIG-
PLAN notices, 19(5):104-112, May 1984. Proceeding

‘All figures have been made with NeWSillustrator, a graph-
ically extensible drawing editor developed by Y. Bernard.

[=I

[I31

[I41

1151

WI

1171

t181

Pg1

WI

1211

PI

1231

[241

1251

1261

[271

of ithe ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environ-
ments.
M. Lacroix, P. Lavency, “Preferences: Putting More
Knowledge into Queries”, 13th International Conference
on Very Large Data Bases, Brighton, England, September
1987, 217-225.
M. Lacroix and M. Vanhoedenaghe, “Manipulating
Complex Objects” in Proceedings of the Workshop
on Database Programming Languages, Roscoff, France,
September 1987, F. Bancilhon and P. Buneman, editors,
ACM Addison Wesley, to appear.
M. Lacroix, M. Vanhoedenaghe, “Tool integration in an
Open Environment”, submitted for publication.
P. Lavency, M. Vanhoedenaghc. “Knowledge Based Con-
fig,uration Management” 21st Hawaii International Con-
ference on System Sciences Kona-Kailua, Hawai , USA,
Jariuary 1988.
L. Osterweil, “Software Processes Are Software too”, 9th
International Conference on Software Engineering, Mon-
terey, California, USA, March 1987, 2-13.
M.A. Ould, C. Robert, “Modeling Iteration in the Soft-
ware Process” , Iteration in the Software Process, Pro-
ceeding of the 3rd International Software Process Work-
shop. Breckenridge, Colorado, USA November 1986 ,
Mark Dawson, Editor.
D. Parnas and P.C. Clements, “A rational Design Process:
how and why to fake it”, IEEE Transaction on Software
Engineering, SE-12: 251-257,1987.
W. Polak, “Framework for Knowledge-Based Program-
ming Environments”, Advanced Programming Environ-
ments, Proceeding of an International Workshop, Norway,
June 1986. Lecture Notes in Computer Science, Springer-
Verlag, edited by G. Goos and J Hartmanis.
C. Potts and G. Bruns, “Recording the Reasons for De-
sign Decisions” 10th International Conference on Software
Engineering, Singapore, April 1988, 418-427.
M.J. Rochkind, “The Source Code Control System”,
IEEE Transactions on Software Engineering, December
1975.
V. Stenning, “An Introduction to ISTAR”, P. Perigrinus
Ltd.,London, U.K., 1986.
R. Taylor at al., “Next Generation Software Environ-
ments: Principles, Problems, and Research directions. In-
formation and Computer Science, University of California
Irvine, Technical report, July 1987.
W.F. Tichy, “Design, Implementation and evaluation of
a Revision Control System”, in Proceedings of the 6th
International Conference on Software Engineering, IEEE,
Tokyo, Japan, September 1982.
W. Tichy. “Tools for Software Configuration Manage-
ment”, International Workshop on Software Versions and
Configuration Control, Grassau, FRG 27/29 January
1988.
L.G. Williams. “Software Process Modeling: A Behav-
ioral Approach”, 10th International Conference on Soft-
ware Engineering, Singapore, April 1988, 174-186.
J. Winkler, “Version Control in Families of Large Pro-
gram”, 9th International Conference on Software Engi-
neering, Monterey, California, USA, March 1987,150-161.

330

